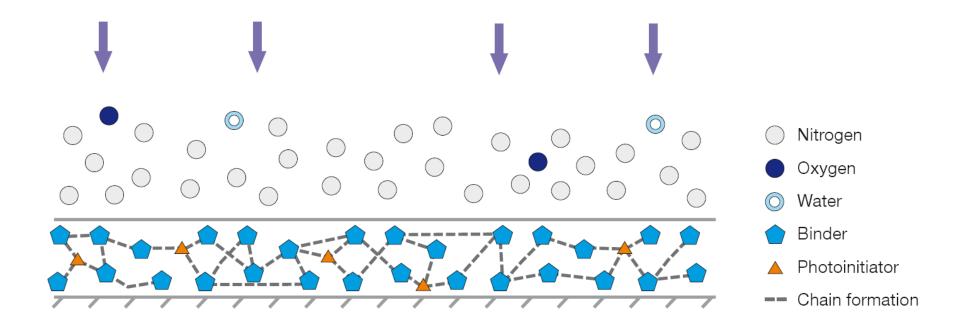


Nitrogen reduced printing


UV curing under ambient conditions

UV curing in O₂-reduced atmosphere

Expectations

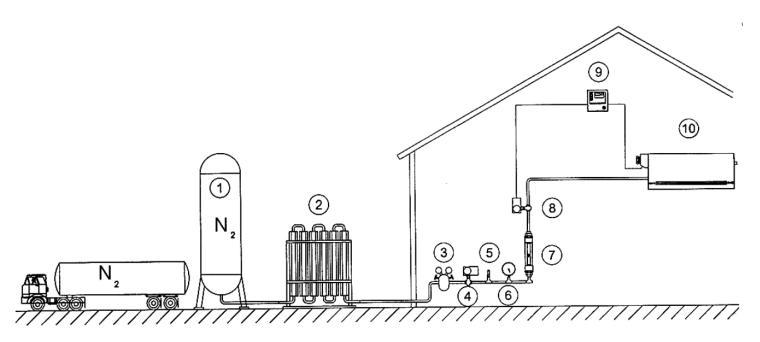
ADVANTAGES

- Less Photoinitiators
- Better Crosslinking
- Reduced risk of migration
- Reduced risk of odours

BUT

- Chemicals (inks / lacquers / silicones) must correspond to the conditions of the inert chamber and the UV system
- Requirements (residual

Residual oxygen requirements


TYPICAL VALUES

- Remark: 1 % = 10000 ppm
- < 50 ppm (0,005%) for silicones</p>
- < 200 ppm (0,02%) for printing inks
- < 500 ppm (0,05%) for varnishes</p>

Nitrogen supply

- ① Nitrogen filling station
- ② Evaporator (temperature after the evaporator 20 °C, if necessary with ancillary heating)
- ③ Pressure reducer/ regulator (constant pressure, regulation range 4 6 bar)
- ④ Shutoff valve with choke (hand or electric valve, electric valve de-energized when shut)
- Safety valve (7 bar)
- Manometer (0 10 bar)
- ? Flow meter (protective cover required)
- ® Control valve (hand or motor valve)
- 1 IST unit

Nitrogen costs

DISTRIBUTION

- Amount of consumption
- Place (Distance to Ditribution)

CONVERSION

- $1 \text{ m}^3 = 1,447 \text{ l}$
- 1 l = 0,691 m³ = 691000 cm³

PRICE EXAMPLES

- Gas bundle 114 m³ = 2,06 EUR/m³ Ident 51585-
- Gas bundle 157 m³ = 1,85 EUR/m³
 Ident 189888-
- Liquid tank (IST 19000 m³) = 0,62 EUR/m³
 Ident 47533-

Nitrogen quality

78% of ambient air is nitrogen, 20,9 % is oxygen

3.5

- = 99,95 pureness
- Residual oxigen level max. 400 ppm

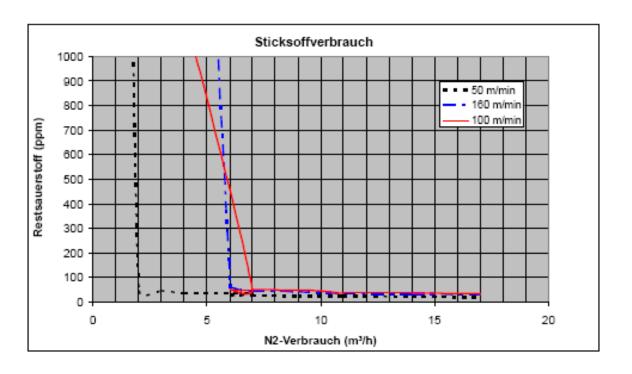
4.0

- = 99,99 pureness
- Residual oxigen level max. 50 ppm

4.6

- = 99,996 pureness
- Residual oxigen level = 5 ppm

5.0


- = 99,99 pureness
- Residual oxigen level max. 2 ppm

Nitrogen consumption

DEPENDENCIES

- Production time
- Speed
- Opening gap (In- and outlet)
- Substrate
- Lamp length

Residual Oxygen Analyzer

- Electrochemical fuel celles for detection
- Oxygen diffuses to the cathode of the cell
- A current output is produced
- Current is proportional to the concentration of oxygen

ADVANTAGE

 Electrochemical process without the risk of an influence by residual VOC 's like on devices using zirconia cells with surface temperatures of up to 650°C and the risk of burning oxygen

Residual Oxygen Control

- Measuring of residual oxygen level
- Closed loop to control the volume of nitrogen feeded into the chamber
- Each nozzle is controlled by a motor driven linear valve, ensuring stable conditions inside the chamber
- If the preselected values can not be reached the system will create a failure signal (different levels possible)

